Math, asked by adeebhafeez, 10 months ago

rationalise the denominator of 2 by √5+√3​

Answers

Answered by Anonymous
27

Step-by-step explanation:

2/(√5 + √3) × (√5 - √3)/(√5 - √3)

2(√5 - √3)/(√5)² - (√3)²

2√5 - 2√3/2

I hope it will help you.

Answered by qwsuccess
6

Given: An expression \frac{2}{\sqrt{5} \ + \  \sqrt{3} }

To find: Rationalised form of the denominator

Solution:

The given expression is \frac{2}{\sqrt{5} \ + \  \sqrt{3} }

We know that (\sqrt{a}  \ + \ \sqrt{b})(\sqrt{a} \ - \  \sqrt{b})  = a -b

(\sqrt{5} \ + \ \sqrt{3} )(\sqrt{5} \ - \  \sqrt{3} ) = 5 - 3 = 2, which is a rational number

So, we need to multiply the numerator and denominator of the given expression by (\sqrt{5} \ - \  \sqrt{3})

\frac{2}{\sqrt{5} \ + \  \sqrt{3} } = \frac{2}{\sqrt{5} \ + \  \sqrt{3} }  \ * \ \frac{\sqrt{5} \ - \  \sqrt{3} }{\sqrt{5} \ - \  \sqrt{3} }

\frac{2(\sqrt{5} \ - \  \sqrt{3} \  )}{(\sqrt{5} \ + \  \sqrt{3})(\sqrt{5} \ - \  \sqrt{3})  }

\frac{2(\sqrt{5} \ - \  \sqrt{3} \ ) }{5 \ - \ 3} = \frac{2(\sqrt{5} \ - \  \sqrt{3} \ )}{2}

\sqrt{5} \ - \  \sqrt{3}

Hence, after rationalising the denominator, the expression becomes \sqrt{5} \ - \  \sqrt{3}

Similar questions