Math, asked by zarinadegoa, 7 months ago

Rationalise the denominator of



2+root 3
2- root 3​

Answers

Answered by Anonymous
113

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{Rationalize\:\:denominator\:\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{7+4\sqrt{3}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\underline{\underline{\sf{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}}}

\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{2+\sqrt{3}}{2+\sqrt{3}}

=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}

\bullet\: \sf{Solve\:\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}

\begin{aligned}&\text { Apply exponent rule: } a^{b} \cdot a^{c}=a^{b+c} \\\\&(2+\sqrt{3})(2+\sqrt{3})=(2+\sqrt{3})^{1+1}\\\\&=(2+\sqrt{3})^{1+1}\end{aligned}

=\left(2+\sqrt{3}\right)^2

=2^2+2\cdot \:2\sqrt{3}+\left(\sqrt{3}\right)^2

=7+4\sqrt{3}

\bullet\: \sf{Solve\:\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}

=2^2-\left(\sqrt{3}\right)^2

=4-3

=1

=\dfrac{7+4\sqrt{3}}{1}

\huge\boxed{\sf{=7+4\sqrt{3}}}

Answered by Anonymous
0

Answer:

Please go through the attachment.

Attachments:
Similar questions