Math, asked by antarasaha9831, 2 months ago

Rationalise the denominator of √3-1/√3+1​

Answers

Answered by devindersaroha43
0

Answer:

Step-by-step explanation:

We need to rationalize the givenequation

To rationalize we will multiply and divide the denominator by √3+1

(√3+1)√3+1)/(√3-1)(√3+1)

Denominator can be simplified using the identity (a2-b2)=(a-b)(a+b)

And the equation becomes

=(√3+1)2/(√3)2-(1)2

=(4+2√3)/2

=2+√3

Answered by Mister360
2

Step-by-step explanation:

 \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \\  \sf \leadsto  \frac{( \sqrt{3}  - 1)( \sqrt{3}  - 1)}{( \sqrt{3}  + 1)( \sqrt{3} - 1) } \\  \sf \leadsto  \frac{( \sqrt{3}  - 1) {}^{2} }{( \sqrt{3 {)}}^{2} -   { (1)}^{2}   }  \\  \sf \leadsto   \frac{ {\sqrt{3} }^{2} - 2 .\sqrt{3}.1  +  {1}^{2}  }{3 - 1} \\  \sf \leadsto  \frac{3 - 2 \sqrt{3} + 1 }{2}  \\  \sf \leadsto  \frac{2 - 2 \sqrt{3} }{2}  \\  \sf \leadsto  \frac{2(1 -  \sqrt{3} )}{2}  \\  \bf \leadsto 1 -  \sqrt{3}

Similar questions