Math, asked by atrsysoul, 3 months ago

rationalise the denominator of 4√3+5√2/4√3+3√2 ​

Answers

Answered by TheBrainlistUser
3

\large\bf\underline\red{Question \:  :- }

\sf{ \frac{4 \sqrt{3} + 5 \sqrt{2}  }{ \sqrt{3  } + 3 \sqrt{2}  } } \\

\large\bf\underline\red{Answer \:  :- }</h3><h3>

How to rationalize

Let assume

\small\sf{ \frac{a + b}{c +d } \longmapsto \frac{a + b}{c + d}  \times  \frac{a - b}{a - b}  } \\

Substitute value

\longmapsto\sf{ \frac{4 \sqrt{3} + 5 \sqrt{2}  }{ \sqrt{3} + 3 \sqrt{2}  } }  \\  \\ \longmapsto\sf{\frac{4 \sqrt{3} + 5 \sqrt{2}  }{ \sqrt{3} + 3 \sqrt{2}  } \times  \frac{ \sqrt{3} - 3 \sqrt{2}  }{ \sqrt{3}  - 3 \sqrt{2} } } \\  \\  \longmapsto\sf{ \frac{(4 \sqrt{3}  + 5 \sqrt{2} )( \sqrt{3}  - 3 \sqrt{2}) }{( \sqrt{3}  + 3 \sqrt{2} )(</strong><strong>3  -  3\sqrt{2} )} }

In denominator we use formula :

(a+b) (a-b) = a²-b²

\longmapsto\sf{ \frac{4 \sqrt{3}( \sqrt{3}   - 3 \sqrt{2} ) + 5 \sqrt{2} ( \sqrt{3}  - 3 \sqrt{2} )}{( \sqrt{3} ) {}^{2} - (3 \sqrt{2}) {}^{2}   } } \\  \\ \longmapsto\sf{ \frac{4 \sqrt{9}  - 12 \sqrt{6}  + 5 \sqrt{6}  - 15 \sqrt{4} }{3 - 9 \sqrt{4} } } \\  \\ \longmapsto\sf{ \frac{4(3) + 7 \sqrt{6} - 15(2) }{3 - 9(2)} } \\  \\\longmapsto\sf{ \frac{12 + 7 \sqrt{6}  - 30}{3 - 18} }

{\large{\underline{\boxed{\bf{\leadsto{\red{  \: \frac{7 \sqrt{6} - 18 }{ - 15} }}}}}}}

_____________________________________

Answered by Sreenandan01
0

Answer: \frac{9+4\sqrt{6} }{15}

Step-by-step explanation:

Please check image attached below.

Attachments:
Similar questions