Math, asked by ayushkumarpal12345, 2 months ago

Rationalise the denominator of 4/3-✓7​

Answers

Answered by Anonymous
0

Answer:

here is ur answer...

hope this helps you...

Attachments:
Answered by sadnesslosthim
67

Given :-

\sf \bullet \;\; \dfrac{4}{3- \sqrt{7}}

To Do :-

  • Rationalise the denominator  

Solution :-

In order to rationalise the denominator we must know the rationalising factor with which we have to multiply the fraction and it is ::  

\bigstar \;\; \boxed{ \; \bf{ \; \dfrac{3+ \sqrt{7}}{ 3 + \sqrt{7}} \; }}

Rationalising the denominator :-

\sf : \; \implies \dfrac{4}{ 3 - \sqrt{7}} \times \dfrac{ 3 + \sqrt{7}}{ 3 + \sqrt{7}}

\sf : \; \implies \dfrac{ 4 \{ 3 + \sqrt{7} \} }{ 3 + \sqrt{7} \{ 3 - \sqrt{7} \} }

\bf \maltese \;\; ( a + b )(a-b) = a^{2} - b^{2}

\sf : \; \implies \dfrac{ 4 \{ 3 + \sqrt{7} \} }{ (3)^{2} -(\sqrt{7})^{2}}

\sf : \; \implies \dfrac{4 \{ 3 + \sqrt{7} \} }{ 9 -7 }

\sf : \; \implies \dfrac{4 \{ 3 + \sqrt{7} \} }{2}

\sf : \; \implies 2 \{ \; 3 + \sqrt{7} \; \}

\sf : \; \implies 6 + 2 \sqrt{7}

Similar questions