Math, asked by Varunbhendarkar17, 1 year ago

Rationalise the denominator of 4 upon 2+√3+√7

Answers

Answered by MarkAsBrainliest
4
\textbf{ANSWER :}

Now, \: \: \frac{4}{2 + \sqrt{3} + \sqrt{7} } \\ \\ = \frac{4}{(2 + \sqrt{3} ) + \sqrt{7} } \\ \\ = \frac{4((2 + \sqrt{3} ) - \sqrt{7} )}{((2 + \sqrt{3} ) + \sqrt{7} )((2 + \sqrt{3}) - \sqrt{7} )} \\ \\ = \frac{4((2 + \sqrt{3}) - \sqrt{7} ) }{ {(2 + \sqrt{3} )}^{2} - {( \sqrt{7} )}^{2} } \\ \\ = \frac{4((2 + \sqrt{3} ) - \sqrt{7}) }{4 + 4 \sqrt{3} + 3 - 7} \\ \\ = \frac{4((2 + \sqrt{3} ) - \sqrt{7} )}{4 \sqrt{3} } \\ \\ = \frac{2 + \sqrt{3} - \sqrt{7} }{ \sqrt{3} } \\ \\ = \frac{ \sqrt{3}(2 + \sqrt{3} - \sqrt{7} ) }{ \sqrt{3} \times \sqrt{3} } \\ \\ = \frac{ \sqrt{3} (2 + \sqrt{3} - \sqrt{7} )}{3} \\ \\=\frac{2\sqrt3 + 3 - \sqrt21}{3}, \\ \\ which \: \: is \: \: the \: \: required \: \: answer.

#\textbf{MarkAsBrainliest}

Varunbhendarkar17: Required answer is 3+2√3-√21upon 3
Varunbhendarkar17: correct
Similar questions