Math, asked by preetramgarhia, 1 year ago

rationalise the denominator of 5+√3÷7-4√3

Answers

Answered by piush0076
13
Ur solution is this
Attachments:
Answered by DaIncredible
47
Heya !!!

 \bf \: using \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}


 \frac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{ 7 + 4 \sqrt{3} }  \\  \\  =  \frac{5(7 + 4 \sqrt{3}) +  \sqrt{3} (7 + 4 \sqrt{3} ) }{ {(7)}^{2} -  {(4 \sqrt{3} )}^{2}  }  \\  \\  =  \frac{35 + 20 \sqrt{3}  + 7 \sqrt{3} + 12 }{49 - 48}  \\  \\  =  47 + 27 \sqrt{3}

Hope this helps ☺
Similar questions