Math, asked by maitri10, 1 year ago

rationalise the denominator of 5/√7-√5​

Answers

Answered by SteffiPaul
1

Therefore we get ' ( 5√7 + 5√5 ) / 2 ' after rationalizing the denominator of 5/√7-√5.

Given:

Number = 5 / ( √7 - √5 )

To Find:

Rationalize the denominator of 5/√7-√5​

Solution:

This question has a simple solution as shown below.

Given number = 5/√7-√5​

Multiplying and dividing by √7 + √5

⇒ 5/√7-√5 = { 5 × (√7 + √5)} × { (√7-√5 ) × (√7 + √5 ) }

⇒ ( 5√7 + 5√5 ) / ( 7 - 5 )       { ∵ ( a + b ) ( a - b ) = a² - b² }

⇒ ( 5√7 + 5√5 ) / 2

Therefore we get ' ( 5√7 + 5√5 ) / 2 ' after rationalizing the denominator of 5/√7-√5.

#SPJ1

Answered by gayatrikumari99sl
0

Answer:

\frac{5(\sqrt{7} +\sqrt{5} )}{2 } is the  rationalization value of \frac{5}{\sqrt{7} - \sqrt{5} } .

Step-by-step explanation:

Explanation:

Given, \frac{5}{\sqrt{7} - \sqrt{5} }

Rationalization method - In order to remove radical symbols or fictitious numbers from the denominator of a rational function, rationalization typically refers to multiplying the function by a smart form of one.

Step 1:

We have \frac{5}{\sqrt{7} - \sqrt{5} } ,

So, we  need to multiply  both numerator and denominator  with \sqrt{7} + \sqrt{5}

\frac{5}{\sqrt{7} -\sqrt{5} } × \frac{\sqrt{7}+  \sqrt{5} }{\sqrt{7} +\sqrt{5} }

\frac{5(\sqrt{7} +\sqrt{5} )}{7 - 5 } =      \frac{5(\sqrt{7} +\sqrt{5} )}{2 } .                     [  ∴ a^2 - b^2 = (a + b)(a- b)]

Final answer:

Hence, rationalization value of \frac{5}{\sqrt{7} - \sqrt{5} } is \frac{5(\sqrt{7} +\sqrt{5} )}{2 } .

#SPJ1

Similar questions