Math, asked by sidhapk, 1 month ago

Rationalise the denominator of 7+3√3 by 2+√5 ​

Answers

Answered by MrImpeccable
9

ANSWER:

To Rationalize:

  • (7+3√3)/(2+√5)

Solution:

We are given that,

\implies\dfrac{7+3\sqrt3}{2+\sqrt5}

To rationalise, we'll multiply and divide by 2 - √5.

So,

\implies\dfrac{7+3\sqrt3}{2+\sqrt5}\times\dfrac{2-\sqrt5}{2-\sqrt5}

\implies\dfrac{(7+3\sqrt3)(2-\sqrt5)}{(2+\sqrt5)(2-\sqrt5)}

We know that,

\hookrightarrow (a-b)(a+b)=a^2-b^2

\implies\dfrac{(7+3\sqrt3)(2-\sqrt5)}{(2+\sqrt5)(2-\sqrt5)}

\implies\dfrac{14-7\sqrt5+6\sqrt3-3\sqrt{15}}{(2)^2-(\sqrt5)^2}

\implies\dfrac{14-7\sqrt5+6\sqrt3-3\sqrt{15}}{4-5}

\implies\dfrac{14-7\sqrt5+6\sqrt3-3\sqrt{15}}{-1}

\implies -14+7\sqrt5-6\sqrt3+3\sqrt{15}

So,

\implies\bf 7\sqrt5-6\sqrt3+3\sqrt{15}-14

Formula Used:

  • \hookrightarrow (a-b)(a+b)=a^2-b^2
Answered by OoINTROVERToO
10

Rationalise the denominator of 7+3√3 by 2+√5 is

7 √5 −6 √3 +3 √15 −14

Similar questions