Math, asked by warjrigareth, 2 months ago

rationalise the denominator of each of the following 1/2√5-√3​

Answers

Answered by VεnusVεronίcα
168

\large {\pmb{\mathfrak{\purple{Question:-}}}}

Rationalise the denominator of the following :

  \sf \dfrac{1}{2 \sqrt{5}  -  \sqrt{3} }

 \\

\large {\pmb{\mathfrak{\purple{Solution:-}}}}

~~\sf \leadsto \dfrac{1}{2\sqrt{5}-\sqrt{3}}

  \:  \:  \: \sf \leadsto \dfrac{1}{2 \sqrt{5}  -  \sqrt{3} }  \times ( \dfrac{2 \sqrt{5}  +  \sqrt{3} }{2 \sqrt{5}  +  \sqrt{3} } )

Using the identity :

\sf (a+b)(a-b)=a^2-b^2

 \:  \:  \sf \leadsto \dfrac{2 \sqrt{5} +  \sqrt{3}  }{ {(2 \sqrt{5} )}^{2}  -  {( \sqrt{3}) }^{2} }

 \:  \:  \sf \leadsto \dfrac{2 \sqrt{5}  +  \sqrt{3} }{(4 \times 5)   - 3}

 \:  \:  \sf \leadsto \dfrac{2 \sqrt{5}  +  \sqrt{3} }{20  -  3}

  \:  \: \sf \leadsto \dfrac{2 \sqrt{5} +  \sqrt{3}  }{17}

 \\

\\

\large {\pmb{\mathfrak{\purple{Know~more:-}}}}

  • \sf (a+b)^2=a^2+b^2+2ab

  • \sf (a-b)^2=a^2+b^2-2ab

  • \sf (a+b)^3=a^2+b^3+3ab(a+b)

  • \sf (a-b)^3=a^2-b^2-3ab(a-b)

  • \sf a^3+b^3=(a+b)(a^2+b^2-ab)
Similar questions