Math, asked by jagannathdas00936, 8 months ago

Rationalise the denominator of each of the following 2√3-√5/2√2+3√3

Answers

Answered by laki5
0

Answer:

777ugghuggeiiwnwkkehebjeusueheggehehehe-ehheh3h3h3hh393j3. 3cegywhwhbwveb3jieieieugefcex3x3fgeywiowoeieieuhegeg3v3bj3uehehehehhehehehbebebebebj33ee0

Answered by Salmonpanna2022
4

Step-by-step explanation:

Given that:-

 \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}  + 3 \sqrt{3} }  \\  \\

What to do:-

To rationalise the denominator.

Solution:-

We have,

 \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}  + 3 \sqrt{3} }  \\  \\

The denominator is 2√2+3√3. Multiplying the numerator and denomination by 2√2-3√3,

We get,

⟹ \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}  + 3 \sqrt{3} }   \times  \frac{2 \sqrt{2}  - 3 \sqrt{3} }{2 \sqrt{2}  - 3 \sqrt{3} } \\  \\

⟹ \frac{(2 \sqrt{3} -  \sqrt{5})(2 \sqrt{2}  - 3 \sqrt{3}   )}{(2 \sqrt{2}  + 3 \sqrt{3})(2 \sqrt{2}   - 3 \sqrt{3}) }  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \frac{(2 \sqrt{2} \times 2 \sqrt{2}) + (  2 \sqrt{3} \times  - 3 \sqrt{3} ) - (  \sqrt{5} \times 2 \sqrt{2} ) + ( \sqrt{5}   \times 3 \sqrt{3} ) }{(2 \sqrt{2}  {)}^{2}(3 \sqrt{3}   {)}^{2} }  \\  \\

 ⟹\frac{4 \sqrt{6}  - 6 \times 3 - 2 \sqrt{10} + 3 \sqrt{15}  }{4 \times 2 - 9\times 3}  \\  \\

⟹ \frac{4 \sqrt{6}  - 18 - 2 \sqrt{10}  + 3 \sqrt{15} }{8 - 27}  \\  \\

⟹ \frac{ - (18 - 3 \sqrt{15}  + 2 \sqrt{10} - 4 \sqrt{6}  ) }{ - 19} \\  \\

⟹ \frac{  \cancel \red{- }18 - 3 \sqrt{15}  + 2 \sqrt{10} - 4 \sqrt{6}   } {  \cancel\red{- }19} \\  \\

⟹ \frac{18 - 3 \sqrt{15}  + 2 \sqrt{10} - 4 \sqrt{6}  ) }{ 19} \:  \:  \tt \red{Ans. }\\  \\

Hence, the denominator is rationalised.

Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

I hope it's help you..☺

Similar questions