Math, asked by kumariabha2341, 3 months ago

rationalise the denominator of each of the following

if you know plz give the answer fast ​

Attachments:

Answers

Answered by anindyaadhikari13
3

Answer 1:

Given fraction,

\tt =  \dfrac{6}{3 +  \sqrt{5} }

Multiplying both numerator and denominator by (3 - √5), we get,

\tt =  \dfrac{6(3 -  \sqrt{5}) }{(3 +  \sqrt{5})(3 -  \sqrt{5})}

Using identity a² - b² = (a + b)(a - b), we get,

\tt =  \dfrac{6(3 -  \sqrt{5}) }{(3)^{2} - (\sqrt{5})^{2}}

\tt =  \dfrac{6(3 -  \sqrt{5}) }{9- 5}

\tt =  \dfrac{6(3 -  \sqrt{5}) }{4}

\tt =  \dfrac{3(3 -  \sqrt{5}) }{2}

Which is our required answer.

Answer 2:

Given fraction,

\tt =  \dfrac{2}{ \sqrt{3} - 1}

Multiplying both numerator and denominator by (√3 + 1), we get,

\tt =  \dfrac{2( \sqrt{3} + 1) }{(\sqrt{3} - 1)( \sqrt{3} + 1) }

Using identity (a + b)(a - b) = a² - b², we get,

\tt =  \dfrac{2( \sqrt{3} + 1) }{(\sqrt{3})^{2}  - (1)^{2}}

\tt =  \dfrac{2( \sqrt{3} + 1) }{3 - 1}

\tt =  \dfrac{2( \sqrt{3} + 1) }{2}

\tt =  \sqrt{3} + 1

Which is our required answer.

Answer 3:

Given fraction,

 \tt =  \dfrac{2}{ \sqrt{3} +  \sqrt{2}  }

Multiplying both numerator and denominator by (√3 - √2), we get,

 \tt =  \dfrac{2( \sqrt{3} -  \sqrt{2} ) }{( \sqrt{3} +  \sqrt{2} )( \sqrt{3} -  \sqrt{2})}

Using identity (a + b)(a - b) = a² - b², we get,

 \tt =  \dfrac{2( \sqrt{3} -  \sqrt{2} ) }{( \sqrt{3})^{2} -(\sqrt{2} )^{2} }

 \tt =  \dfrac{2( \sqrt{3} -  \sqrt{2} ) }{3 - 2}

 \tt =  \dfrac{2( \sqrt{3} -  \sqrt{2} ) }{1}

 \tt =  2( \sqrt{3} -  \sqrt{2})

Which is our required answer.

•••♪

Similar questions