Math, asked by kiritominz, 3 months ago

Rationalise the denominator of each of the following

 \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }

Answers

Answered by 12thpáìn
21

_____________________

Rationalise:

  • { \sf\cfrac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} } }

On Rationalise the term denominator

{ \implies\sf\cfrac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} } \times \cfrac{3 - 2 \sqrt{2} }{3  -  2 \sqrt{2} }}

{\implies \sf\cfrac{(3 - 2 \sqrt{2}) ^{2}  }{ {3}^{2}   -  (2 \sqrt{2}) ^{2}  } }

{\implies \sf\cfrac{{3}^{2}  + (2 \sqrt{2}) ^{2} - 2 \times 3 \times 2 \sqrt{2}   }{ 9   -   {2}^{2}  (\sqrt{2} )^{2}  } }

{\implies \sf\cfrac{9 +8 -12\sqrt{2}   }{ 9   -   4 \times 2  } }

{\implies \sf\cfrac{17 -12\sqrt{2}   }{ 9   -   8 } }

{~~~~~~~~~\underline{\pink{ \boxed{\bf17 -12\sqrt{2} }} } }\\\\

Hope it helpful ❣️

_____________________

More Information

  • \\\\\sf(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab
  • \\\sf(a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab
  • \\\sf(a + b)(a - b)  =  {a}^{2}   -   {b}^{2}
  • \\\sf(a + b + c)^{2}  =  {a}^{2}  +  {b}^{2}  + {c}^{2}+ 2ab + 2bc + 2ca
  • \\\sf(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)
  • \\\sf(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)
  • \\\sf a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)
  • \\\sf a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)\\\\
Answered by tennetiraj86
3

Step-by-step explanation:

Given:-

(3-2√2)/(3+2√2)

To find:-

Rationalising the denominator ?

Solution:-

Given that

(3-2√2)/(3+2√2)

Denominator = 3+2√2

We know that

Rationalising factor of a+√b = a-√b

Rationalising factor of 3+2√2 = 3-2√2

On Rationalising the denominator then

=> [(3-2√2)/(3+2√2)]×[(3-2√2)/(3+2√2)]

=> [(3-2√2)(3-2√2)]×[(3+2√2)(3-2√2)]

=> (3-2√2)^2/[(3+2√2)(3-2√2)]

We know that

(a+b)(a-b)=a^2-b^2

Where a = 3 and b=2√2

=> (3-2√2)^2/[(3)^2-(2√2)^2]

=> (3-2√2)^2/(9-8)

=>(3-2√2)^2/1

=>(3-2√2)^2

It is in the form of (a-b)^2

Where a = 3 and b=2√2

We know that

(a-b)^2 = a^2-2ab+b^2

=> (3-2√2)^2

=> 3^2 - 2 (3)(2√2) +(2√2)^2

=> 9-12√2+8

=> 17-12√2

(3-2√2)/(3+2√2) = 17-12√2

Answer:-

(3-2√2)/(3+2√2) = 17-12√2

Used formulae:-

  • Rationalising factor of a+√b = a-√b

  • (a+b)(a-b)=a^2-b^2

  • (a-b)^2 = a^2-2ab+b^2

Rationalising factor:-

The product of two irrational numbers is a rational number then each irrational is called a Rationalising factor of each other.

Similar questions