Math, asked by skmittal1315, 1 year ago

Rationalise the denominator of root five by root three +root 2

Answers

Answered by BrainlyQueen01
11
Hi there !

__________________________



Given :

√5 / √3 + √2

Solution :

√5 / √3 + √2

multiply numerator and denominator by √3 - √2.

As follows :)


√5 / √3 + √2 × √3 - √2 / √3 - √2

√5 ( √3 - √2) / (√3)² - (√2)²

√15 - √10 / 2 - 1

√15 - √10

Hence,

On rationalising it's denominator, we get ;

=> √15 - √10

_______________________

Thanks for the question !
Answered by Anonymous
14
 \huge \red{hello}
 \pink{given}
 <br />= &gt; \frac{ \sqrt{5} }{ \sqrt{3 + \sqrt{2} } }
 \pink{now}
 \pink{multiply \: by \: \sqrt{3 - \sqrt{2} \: \: in} }
 \pink{numerator \: and \: denominator}
 <br />= &gt; \: \frac{ \sqrt{5 \times \sqrt{3 - \sqrt{2} } } }{ \sqrt{3 + \sqrt{2 \times \sqrt{3 - \sqrt{2} } } } }
 <br />= &gt; \frac{ \sqrt{15 - \sqrt{10} } }{ \sqrt{ {3}^{2} - \sqrt{ {2}^{2} } } }

Reason Formula is
(a+b)(a-b)

 = &gt; \frac{ \sqrt{15 - \sqrt{10} } }{3 - 2}
 = &gt; \frac{ \sqrt{15 - \sqrt{10} } }{1}
 = &gt; \sqrt{15 - \sqrt{10} }

hence,
The Rationalised form is
 \sqrt{15 - \sqrt{10} }
 \huge \green{thank \: you}
Similar questions