Math, asked by deepak664, 1 year ago

Rationalise the denominator of
 \frac{1}{ \sqrt{6}  +  \sqrt{5}  -  \sqrt{11} }


Or
Prove that :
 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  = 0
Plzz solve these two questions .
I need help .

Answers

Answered by GOZMIt
10
HEYA....

SOLUTION IS IN THE ATTACHMENT..


Rationalising the denominator : If the denominator of the expression contains a term with a square root or a number under the radical sign then the process of converting it to an equivalent expression whose denominator is a rational number , is called rationalising the denominator.


•Conjugate of (√a + b) is (√a-b) & Conjugate of (√a - √ b) is (√a + √b).

For Rationalising the denominator , we will multiply the numerator and denominator by conjugate of denominator to remove the radical sign form the denominator.

HOPE THIS WILL HELP YOU...

TYSM........@GOZMIT
Attachments:

Anonymous: waooooo awesome ... ✌✌
mrina123: woww
Answered by Anonymous
8
Heya here ,,.

Solution ⬇⬇⬇⬇⬇

___________________________

Solution of first question
*******************************

question \:  \: is \:  \frac{1}{ \sqrt{6} +  \sqrt{5}   -  \sqrt{11} } \\  \\ sol. \\  \\  \frac{1}{ \sqrt{6} +  \sqrt{5} -  \sqrt{11}   }   \\  \\  =  >  \frac{1}{( \sqrt{6}  +  \sqrt{5} ) -  \sqrt{11} }  \times  \frac{( \sqrt{6}  +  \sqrt{5} ) +  \sqrt{11} }{( \sqrt{6} +  \sqrt{5} ) +  \sqrt{11}  }  \\  \\  =  >  \frac{ \sqrt{6} +  \sqrt{5}   +  \sqrt{11} }{( \sqrt{6} +  \sqrt{5}) ^{2} - ( { \sqrt{11}) }^{2}  }  \\  \\  =  >  \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{6 + 5 + 2 \times  \sqrt{6} \times  \sqrt{5}   - 11}  \\  \\  =  >  \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{2 \sqrt{30 } }  \\  \\  =  >   \frac{ (\sqrt{6} +   \sqrt{5}  +  \sqrt{11})  }{2 \sqrt{30} }  \times  \frac{ \sqrt{30} }{ \sqrt{30} }  \\  \\  =  >  \frac{( \sqrt{6} +  \sqrt{5} +  \sqrt{11}  ) \sqrt{30}  }{60}  \\  \\  =  >  \frac{( \sqrt{6}  +  \sqrt{5}  +  \sqrt{11} ) \sqrt{6}  \times  \sqrt{5}  }{60}  \\  \\  =  >  \frac{6 \times  \sqrt{5} + 5 \times  \sqrt{6} \times  \sqrt{330}   }{60}   \\ answer
_______________________________

Solution of second question
***********************************
given \:  \:  \frac{1}{2 +  \sqrt{3} } +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }   +  \frac{1}{2 -  \sqrt{5} }  = 0 \\  \\ solution. \\  \\  \frac{1}{2 +  \sqrt{3} }  =  \frac{1}{2 +  \sqrt{3} } \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }   \\  \\  =  >  \frac{2 -  \sqrt{3} }{1}  = 2 -  \sqrt{3}  \\  \\ similarly \:  \\  \\  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  =  \sqrt{5}  +  \sqrt{3} \\   \\ and \:  \:  \frac{1}{2 -  \sqrt{5} }  = -  (2 +  \sqrt{5} ) \\  \\ given \:  \: equation \:   \\  =  > (2 -  \sqrt{3} ) + ( \sqrt{5}  +  \frac{4}{ \sqrt{3} } ) - (2 +  \sqrt{5} ) \\  \\  =  > 0 \\  \\ hence \:  \: proved
_________________________________

Hope it's helps you.
☺☺

Similar questions