Math, asked by ketansamdhyan05, 8 months ago


Rationalise the denominator of
 \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3 }  }

Answers

Answered by Joon111
11

 \frac{6 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  \times  \frac{ \sqrt{6} +   \sqrt{2} }{ \sqrt{6}  +  \sqrt{2} }

 \frac{(6 \sqrt{3})( \sqrt{6}  +  \sqrt{2})  }{( \sqrt{6} -  \sqrt{2})( \sqrt{6}  +  \sqrt{2})   }

 \frac{6 \sqrt{18}  + 6 \sqrt{6} }{6 - 2}

 \frac{6( \sqrt{9 \times 2  } +  \sqrt{3 \times 2 )}  }{4}

 \frac{6 \times 3 \times 2( \sqrt{3}) }{4}

 \frac{36 \sqrt{3} }{4}

9 \sqrt{3}

Answered by medhansh88
2

Answer:

6

Step-by-step explanation:

 \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  } \times  \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6}   +  \sqrt{3} }  \\  =   \frac{3 \sqrt{2} ( \sqrt{6} +  \sqrt{3} ) }{ (\sqrt{6}  -  \sqrt{3} ) ^{2} }  \\  =  \frac{ \sqrt{9 \times 2}( \sqrt{6}   +  \sqrt{3}) }{( \sqrt{6}  -  \sqrt{3} ) ^{2} }  \\  =  \frac{ \sqrt{18}  \times  \sqrt{6}  \times  \sqrt{3} }{6 - 3}  \\  =  \frac{ \sqrt{18}  \times  \sqrt{18} }{3}  \\  =  \frac{18}{3}  \\  = 6

Similar questions