Math, asked by rawatbaishnavi, 1 month ago

Rationalise the denominator of the 3+root2/4+root2

Answers

Answered by ImperialGladiator
39

Answer:

  • \dfrac{{ 10 +    \sqrt{2} } }{{14  }{ } }

Explanation:

Given fraction,

 \longrightarrow \:  \dfrac{ 3+  \sqrt{2} }{4 +  \sqrt{2} }

Multiplying the conjugate of the denominator to the fraction.

 \longrightarrow \:  \dfrac{ 3+  \sqrt{2} }{4 +  \sqrt{2} }  \times  \dfrac{4  -  \sqrt{2} }{4 -  \sqrt{2} }

 \longrightarrow \:  \dfrac{( 3+  \sqrt{2}) {(4 +  \sqrt{2} )} }{{(4  -  \sqrt{2} )}{(4 -  \sqrt{2}) } }

Applying the identity (a - b)(a + b) = a² - b² on the denominator.

 \longrightarrow \:  \dfrac{{ 3(4 -  \sqrt{2} ) +  \sqrt{2} (4 -  \sqrt{2} ) } }{{(4 {)}^{2}   -(  \sqrt{2}  {)}^{2} }{ } }

 \longrightarrow \:  \dfrac{{ 12 -  3\sqrt{2}  +  4  \sqrt{2} -  {2} } }{{16   -2  }{ } }

 \longrightarrow \:  \dfrac{{ 10 +    \sqrt{2} } }{{14  }{ } }

{ \underline{ \therefore{ \sf{Required \: answer :  \:  \dfrac{10 +  \sqrt{2} }{14} }}}}

_____________________

Identity used :

  • (a - b)(a + b) = a² - b²

Conjugate :

  • A binomial expression formed by changing the sign. For example conjugate for (x + y) is (x - y)
Similar questions