Math, asked by souvik4498, 1 year ago

Rationalise the denominator of the following 1/root 7-root 6

Answers

Answered by Anonymous
11

Given :-

\dfrac{1}{\sqrt{7}-\sqrt{6}}

To find :-

Rationalise the denominator.

Solution:-

= \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }  \times  \dfrac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }

= \dfrac{1( \sqrt{7}  +  \sqrt{6} )}{ ( \sqrt{7 }  -  \sqrt{6} )\times( \sqrt{7}   +  \sqrt{6} )}

using suitable identity,

\boxed{\sf{ (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}

Now,

= \dfrac{ \sqrt{7} +  \sqrt{6}  }{( {7)}^{2} - (6)^{2}  }

= \dfrac{ \sqrt{7} +  \sqrt{6}  }{7- 6}

= \dfrac{ \sqrt{7}  +  \sqrt{6} }{1}

hence, the required answer is

 =  { \sqrt{7}  +  \sqrt{6} }{}

Answered by Salmonpanna2022
2

Step-by-step explanation:

Solution:

1/(√7 - √6)

The denominator is √7 - √6.

We know that

Rationalising factor of √a - √b = √a + √b.

So, the rationalising factor of √7 - √6 = √7 + √6.

On comparing the denominator them

=> [1/(√7 - √6)]×[(√7 - √6)/(√7- √6)]

=> [1(√7 + √6)]/[(√7 - √6)(√7 + √6)]

Applying algebraic identity in denominator; (a-b)(a+b) = a^2 - b^2. Where, a = √7 and b = √6.

=> [1(√7 + √6)]/[(√7)^2 - (√6)^2)]

=> [1(√7 + √6)]/(7 - 6)

=> [1(√7 + √6)]/1

=> 1(√7 + √6)

=> √7 + √6

Hence, the denominator is rationalised. of

Answer:

→ √7 - √6

Used Formulae:

  • Rationalising factor of √a - √b = √a + √b.

  • (a-b)(a+b) = a^2 - b^2.
Similar questions