Math, asked by srajveer792, 11 months ago

rationalise the denominator of the following:​

Attachments:

Answers

Answered by MoodyCloud
8

 =  \frac{ \sqrt{3}  +  \sqrt{2} }{2 \sqrt{3} - 3 \sqrt{2}  }

 =  \frac{ \sqrt{3}  +  \sqrt{2} }{2 \sqrt{3} - 3 \sqrt{2}  }  \times   \frac{2 \sqrt{3} + 3 \sqrt{2}  }{2 \sqrt{3}  + 3 \sqrt{2} }

 =  \frac{2 {( \sqrt{3} )}^{2} + 3 {( \sqrt{2}) }^{2}  }{ {2 \sqrt{3} }^{2} -  {3 \sqrt{2} }^{2}  }

 =  \frac{(2 \times 3) + (3  \times 2}{(4 \times 3) - (9 \times 2)}

</p><p> =  \frac{12}{12 - 18}  \\  </p><p>=  \frac{12}{ - 6}  \\  =   \frac{2}{ - 1}

Answered by ishwarsinghdhaliwal
1

Step-by-step explanation:

 \frac{ \sqrt{3}  +  \sqrt{2} }{2 \sqrt{3} - 3 \sqrt{2}  }  \\  = \frac{ \sqrt{3}  +  \sqrt{2} }{2 \sqrt{3} - 3 \sqrt{2}  } \times  \frac{2 \sqrt{3}  +  3 \sqrt{2} }{2 \sqrt{3}  + 3 \sqrt{2} }  \\  =  \frac{6 + 3 \sqrt{6} + 2 \sqrt{6} + 6  }{(2 \sqrt{3}) ^{2}  - (3 \sqrt{2} ) ^{2}  }  \\  =  \frac{12 + 5 \sqrt{6} }{12 - 18}  \\  =  \frac{12 + 5 \sqrt{6} }{ - 6}  \\  =   \frac{ - 12 - 5 \sqrt{6} }{6}

Similar questions