Math, asked by krupa2288, 9 months ago

rationalise the denominator of the following​

Attachments:

Answers

Answered by sharathjthomas
1

Answer:

2+root3

Step-by-step explanation:

1/2-root3

1/(2-root3)

2+root3/4-3

2+root3

Answered by SillySam
2

Answer :

 \tt \: 2 +  \sqrt{3}

Solution:

Rationalise the denominator :

 \tt \dfrac{1}{2 -  \sqrt{3} }

To rationalize the denominator , we multiply both numerator and denominator with a term that is exactly same as denominator but with an opposite sign .

To rationalize , \tt \frac{1}{2 - \sqrt{3}} , we multiply both numerator and denominator with \tt 2+ \sqrt{3} .

 \tt \therefore  \dfrac{1}{2 -  \sqrt{3} }   \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \tt \implies \dfrac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3}  )}  \\  \\  \tt \implies \frac{2 +  \sqrt{3} }{ ({2})^{2} - { (\sqrt{3}) }^{2}  } \\  \\  \tt \implies \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  \tt \implies 2 +  \sqrt{3}

 { \rm{ \therefore \: rationalising \: denominator \: of \:  \frac{1}{2 -  \sqrt{3} } }} \\  \\ { \rm\: gives \: 2 +  \sqrt{3}. }

Similar questions