Math, asked by gokiviswa, 9 months ago

rationalise the denominator of the following 2+√3/2-√3​

Answers

Answered by Anonymous
5

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \:  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \frac{ {(2 +  \sqrt{3}) }^{2} }{ {2}^{2} -  { (\sqrt{3} )}^{2}  }

 \frac{4 +  3 + 4 \sqrt{3} }{4 - 3}

 \frac{7 + 4 \sqrt{3} }{1}  \\ 7 + 4 \sqrt{3}

Answered by Anonymous
3

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Rationalise the denominator of the following 2+√3/2-√3.

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

\sf\:⟹\frac{ 2 + \sqrt{3}}{ 2 - \sqrt{3}}

  • Multiply both numerator & denominator with 2 + √3 .

\sf\:⟹\frac{ 2 + \sqrt{3}}{ 2 - \sqrt{3}} × \frac{ 2  +  \sqrt{3}}{ 2  +  \sqrt{3}}

 \sf\:⟹ \frac{(2 + \sqrt{3}) ( 2  +  \sqrt{3})}{ (2   -   \sqrt{3})(2   +  \sqrt{3})}

\sf\:⟹ \frac{(2 + \sqrt{3})^{2}}{(2 - \sqrt{3})(2 + \sqrt{3}) }

  • (a + b)² = a² + b² + 2ab
  • (a + b)(a - b) = a² - b²

\sf\:⟹ \frac{(2)^{2} + (\sqrt{3})^{2}  +  2(2)(\sqrt{3})}{(2) ^{2} - (\sqrt{3})^{2}}

\sf\:⟹ \frac{4 + 3 + 4\sqrt{3}}{4 - 3}

\sf\:⟹ 7 + 4\sqrt{3}

\underline{\boxed{\bf{\purple{∴ \frac{ 2 + \sqrt{3}}{2 - \sqrt{3}} = 7 + 4\sqrt{3}.}}}}\:\orange{\bigstar}</p><p></p><p>

Similar questions