Math, asked by tanushrockz66, 5 months ago

Rationalise the denominator of the following

Attachments:

Answers

Answered by akashchimkar236
2

a)

 \frac{1}{3 +  \sqrt{2} }  =  \frac{1}{3 +  \sqrt{2} }  \times  \frac{3 -  \sqrt{2} }{3 -  \sqrt{2} }  =  \frac{3 -  \sqrt{2} }{(3 +   \sqrt{2})(3 -  \sqrt{2} )  }  =  \frac{3 -  \sqrt{2} }{ {(3)}^{2} -  { (\sqrt{2}) }^{2}  }  =    \frac{3 -  \sqrt{2} }{9 - 2}  =  \frac{3 -  \sqrt{2} }{7}

b)

 \frac{1}{ \sqrt{6}  -  \sqrt{5} }  = \frac{1}{ \sqrt{6  } -  \sqrt{5}  } \times   \frac{ \sqrt{6}   +  \sqrt{5} }{ \sqrt{6} +  \sqrt{5}  }  =  \frac{ \sqrt{6}  +  \sqrt{5} }{( \sqrt{6}  -  \sqrt{5})( \sqrt{6}  +  \sqrt{5} ) }  =   \frac{ \sqrt{6}  +  \sqrt{5} }{( { \sqrt{6} })^{2}   -  ( { \sqrt{5} })^{2}  } =  \frac{ \sqrt{6}  +  \sqrt{5} }{6 - 5}  =  \frac{ \sqrt{6} +  \sqrt{5}  }{1}  =  \sqrt{6}  +  \sqrt{5}

c)

 \frac{1}{ \sqrt{41}  - 5}  =  \frac{1}{ \sqrt{41}  - 5}  \times  \frac{ \sqrt{41}  + 5}{ \sqrt{41}  + 5} =  \frac{ \sqrt{41} + 5 }{( \sqrt{41} - 5)( \sqrt{41} + 5 )}  =   \frac{ \sqrt{41} + 5 }{( { \sqrt{41}) }^{2}  -  {(5)}^{2} }   =   \frac{ \sqrt{41}  + 5}{41 - 25}   =  \frac{ \sqrt{41} + 5 }{16}

Similar questions