Math, asked by kanishkabalutia86, 2 months ago

rationalise the denominator of the following​

Attachments:

Answers

Answered by 12thpáìn
4

  \sf\dfrac{7 \sqrt{3} -  \sqrt{2}  }{ \sqrt{48} +  \sqrt{18}  }

  • On Rationalising the Denominator

 ~~~~~:~~\implies \sf\dfrac{7 \sqrt{3} -  \sqrt{2}  }{ \sqrt{48} +  \sqrt{18}  }  \times  \dfrac{ \sqrt{48} -  \sqrt{18}  }{ \sqrt{48} -  \sqrt{18}  }

{~~~~~:~~\implies  \sf\dfrac{7 \sqrt{3}( \sqrt{48} -  \sqrt{18})-  \sqrt{2}( \sqrt{48} -  \sqrt{18}) }{  { \sqrt{ {48}^{2} } }   -  \sqrt{ {18}^{2} }   } }

~~~~~:~~\implies \sf\dfrac{7   \times 12  -  7\sqrt{54}-  \sqrt{96}  + 6 }{  48  -  18   }

~~~~~:~~\implies \sf\dfrac{84  + 6 -  7\sqrt{54}-  \sqrt{96}  }{  30 }

{~~~~~:~~\implies \sf\dfrac{90  -  7\sqrt{2 \times 3 \times 3 \times  3 }-  \sqrt{2 \times 2 \times 2 \times2 \times 2 \times 3 }  }{  30  }}

~~~~~:~~\implies \sf\dfrac{90  -  21\sqrt{6 }-  4\sqrt{ 6 }  }{  30  }

~~~~~:~~\implies \sf\dfrac{90  -  25\sqrt{6 }  }{  30  }

~~~~~:~~\implies \sf\dfrac{5(18  -  5\sqrt{6 })  }{  5(6)  }

~~~~~:~~\implies \sf\dfrac{18  -  5\sqrt{6 } }{ 6  }\\

 \boxed{  \sf\dfrac{7 \sqrt{3} -  \sqrt{2}  }{ \sqrt{48} +  \sqrt{18}  }  = \bf\dfrac{18  -  5\sqrt{6 } }{ 6  }  }

Similar questions