Math, asked by anirudhaitha05, 7 months ago

Rationalise the denominator of the following and show the steps
\frac{5\sqrt{3} +3\sqrt{5} }{ 5\sqrt{3} -3\sqrt{5} }


Thank u in advance

Answers

Answered by Anonymous
1

Hope it helps.....

Please mark as brainliest......

Attachments:
Answered by Anonymous
2

\large {\underline {\underline {\sf {Question}}}}

Rationalise the denominator od the following:-

 \implies \dfrac{5\sqrt{3} + 3\sqrt{5}}{5\sqrt{3} - 3\sqrt{5}}

\large {\underline {\underline {\sf {\pink {How\: to \: solve?}}}}}

  • To rationalize a denominator we have to multiply the denominator with a radical opposite the sing given.
  • then we have to solve further by identifying the algebric identities.
  • finally we are with the answer.
  • So, lets start

\large {\underline {\underline {\sf {\blue {Solution}}}}}

\implies \tt \dfrac {5\sqrt{3} + 3\sqrt{5}} {5\sqrt{3} - 3\sqrt{5}}

\implies \tt multiply \: denominator \: by\: radical

\implies \dfrac{5\sqrt{3} + 3\sqrt{5}} {5\sqrt{3} - 3\sqrt{5}} \times \dfrac{5\sqrt{3} + 3\sqrt{5}} {5\sqrt{3} + 3\sqrt{5}}

 \implies \tt \dfrac{5\sqrt{3} + 3\sqrt{5}²} {5\sqrt{3}² - 3\sqrt{5}²}

\implies \tt by \: using\: algebric\: identity \\ \tt (a +b)² = a² +b² +2ab

\implies\dfrac{5\sqrt{3}² + 2 \times 5\sqrt{3} \times 3\sqrt{5} + 3\sqrt{5}² } {75 - 45}

 \implies \tt \dfrac{75 + 30\sqrt{15} + 45}{30}

 \implies \tt \dfrac{15 ( 5 + 2\sqrt{15} +3)}{30}

\implies \tt \dfrac{ 8 + 2\sqrt{15}}{2}

\implies \tt  4 + \sqrt{15}

\large {\boxed {\boxed {\tt {\green {Answer = 4 + \sqrt{15}}}}}}

Hence, we are done with the problem.

Similar questions