Math, asked by angelinapangyok, 11 months ago

rationalise the denominator of the following
 \sqrt{2}  +  \sqrt{5}  \div  \sqrt{3}

1 \div  2 \sqrt{5}

Answers

Answered by anjalihaldkar69972
0
  • Step-by-step explanation:

see this are me write ? please say something

Attachments:
Answered by pandaXop
0

Step-by-step explanation:

Given:

  •  \frac{ \sqrt{2}  +  \sqrt{5} }{ \sqrt{3} }

Rationalising the denominator

 =  >  \frac{ \sqrt{2 } +  \sqrt{5}  }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }

 =  >  \frac{ \sqrt{6} +  \sqrt{15}  }{ \sqrt{3} }

Second =

 \frac{1}{{2 \sqrt{5} } }

Rationalising the denominator

 =  >  \frac{1}{2 \sqrt{5} }  \times  \frac{2 \sqrt{5} }{2 \sqrt{5} }

 =  >  \frac{2 \sqrt{5} }{ {2}^{2}  \times  \sqrt{25} }

 =  >  \frac{2 \sqrt{5} }{4 \times 5}

 =  >   \frac{2 \sqrt{5} }{20}

Similar questions