Math, asked by Hiyajain12, 1 month ago

Rationalise the denominator of5/ roots 3 +root2​

Answers

Answered by Dinosaurs1842
3

Question :-

Rationalize \sf \dfrac{5}{\sqrt{3} +\sqrt{2} }

Answer :-

  • In order to rationalize the denominator, we have to multiply the number with the denominator's inverse.
  • Multiplying by  \sf\dfrac{\sqrt{3} -\sqrt{2} }{\sqrt{3} -\sqrt{2} }  

\implies \sf \dfrac{5}{\sqrt{3} +\sqrt{2} } \times \dfrac{\sqrt{3}-\sqrt{2} }{\sqrt{3}-\sqrt{2}}

\implies \sf \dfrac{5\times (\sqrt{3} - \sqrt{2})}{(\sqrt{3} +\sqrt{2})\times (\sqrt{3} - \sqrt{2}  )}

By using the identity a² - b² = (a+b)(a-b) in the denominator,

\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{(\sqrt{3} )^{2} - (\sqrt{2} )^{2} }

\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{(3 ) - (2 ) }

\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{1 }

Any number with the denominator 1, can be written as the number itself.

Therefore,

\implies \sf Answer = 5\sqrt{3} - 5\sqrt{2}

The rationalized form of \implies \sf \dfrac{5}{\sqrt{3} -\sqrt{2}  } is \sf 5\sqrt{3} - 5\sqrt{2}

Identities :-

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (x+a)(x+b) = x² + x(a+b) + ab
  • a²-b² = (a+b)(a-b)
  • (a+b)³ = a³ + 3a²b + 3ab² + b³
  • (a-b)³ = a³ - 3a²b + 3ab² - b³
  • a³+b³ = (a+b)(a² - ab + b²)
  • a³-b³ = (a-b)(a² + ab + b²)
  • a³+b³+c³ - 3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)

Similar questions