Math, asked by mannatanjali2, 2 months ago

rationalise the denominator please be fast​

Attachments:

Answers

Answered by rainha
0

Answer:

 \frac{1}{( \sqrt{5} +  \sqrt{2} ) +  \sqrt{3}  }  =  \frac{1}{ \sqrt{5} +  \sqrt{2} +  \sqrt{3}   }  \times  \frac{ \sqrt{5} +  \sqrt{2}  -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{2}  -  \sqrt{3} }

 \frac{ \sqrt{5}  +  \sqrt{2}  -  \sqrt{3} }{ {( \sqrt{5}  +  \sqrt{2} )}^{2}  - 3}   =  \frac{ \sqrt{5}  +  \sqrt{2} -  \sqrt{3}  }{5 + 2 + 2 \sqrt{5}  - 3}

 \frac{ \sqrt{5}  +  \sqrt{2}  -  \sqrt{3} }{4 + 2 \sqrt{3} }

 \frac{ \sqrt{5}  +  \sqrt{2}  -  \sqrt{3} }{4 + 2 \sqrt{3} }  \times  \frac{4 - 2 \sqrt{3} }{4 - 2 \sqrt{3} }

 \frac{( \sqrt{5}  +  \sqrt{2}  -  \sqrt{3})(4  + 2 \sqrt{3} )}{16 - 12}

 =   \frac{( \sqrt{5} +  \sqrt{2}   -  \sqrt{3} )2(2 +  \sqrt{3)} }{4}

  = \frac{( \sqrt{5} +  \sqrt{2}  -  \sqrt{3}) ( 2 +  \sqrt{3} )}{2}

Similar questions