Math, asked by nihira89, 10 months ago

rationalise the denominator
root2÷(root2 + root3 - root5)

Answers

Answered by anupampr79
24

Here is the answer.

Hope it helps!!

Attachments:
Answered by syed2020ashaels
0

The given question is that we have to rationalize the given expression.

The given expression is

 \frac{ \sqrt{2} }{ \sqrt{2}  +  \sqrt{3}  -  \sqrt{5} }

on rationalising the denominator, we have to multiply the entire expression with the conjugate term of denominator.

 \frac{ \sqrt{2} }{ (\sqrt{2} +  \sqrt{3} )-  \sqrt{5}   }  \\  \frac{ \sqrt{2} }{( \sqrt{2} +  \sqrt{3}  -  \sqrt{5}  }  \times  \frac{ \sqrt{2} }{( \sqrt{2} +  \sqrt{3} )  +  \sqrt{5}  }  \\   \frac{ \sqrt{2} ( \sqrt{2 }  +  \sqrt{3}) +  \sqrt{5}  }{ {( \sqrt{2}  +  \sqrt{3}) }^{2}  -  { \sqrt{5} }^{2} }   \\  \frac{ { \sqrt{2} }^{2}  +  \sqrt{6}  +  \sqrt{10} }{ { \sqrt{2} }^{2} +  { \sqrt{3} }^{2}  + 2 \times  \sqrt{6}  - 5 }  \\  \frac{2 +  \sqrt{6}  +  \sqrt{10} }{5 + 2 \sqrt{6} - 5 }  \\  \frac{2 +  \sqrt{6}  +  \sqrt{10} }{2 \sqrt{6} }

On rationalising we get the above factor.

again on rationalising the factor obtained now will be

 \frac{2 +  \sqrt{6}  +  \sqrt{10} }{2 \sqrt{6} }  \times  \frac{2 \sqrt{6} }{2 \sqrt{6} }  \\  \frac{2 \sqrt{6}  (2  +  \sqrt{6}  +  \sqrt{10} )}{ {(2 \sqrt{6} )}^{2} }  \\  \frac{4 \sqrt{6}  + 2 \times   { \sqrt{6} }^{2}  + 2 \sqrt{60}  }{4 \times 6}  \\  \frac{4 \sqrt{6}  + 12 + 2 \sqrt{60} }{24}  \\  \frac{4\sqrt{6}  + 12+ 2 \sqrt{4 + 15} }{24}  \\  \frac{4 \sqrt{6}  + 12 + 2 \times 2 \times  \sqrt{15} }{24}  \\  \frac{4( \sqrt{6}  + 3 +  \sqrt{15} }{24}  \\  \frac{ \sqrt{6}  + 3 +  \sqrt{15}) }{6}  \\

Therefore, the final answer obtained is

 \frac{3 +  \sqrt{6}  +  \sqrt{15} }{6}

# spj2

we can find the similar questions through the link given below

https://brainly.in/question/16843569?referrer=searchResults

Similar questions