Math, asked by nitashirsath90, 2 months ago

Rationalise the denominator:-
4 \div   \sqrt{6}  -  \sqrt{4}

Answers

Answered by Tomboyish44
51

Answer:

\sf \dashrightarrow \ \dfrac{2\sqrt{6} + 4}{1}

Step-by-step explanation:

We're asked to rationalise the following:

\sf \dashrightarrow \ \dfrac{4}{\sqrt{6} - \sqrt{4}}

  • In order to rationalise the denominator, we'll have to multiply both the numerator and the denominator of the fraction by the conjugate of the denominator.

  • Conjugating an expression with two terms basically changes the sign between the two terms from + (plus) to - (minus) or vice-versa.

For example;

  • Conjugate of 5 + 3 is 5 - 3
  • Conjugate of 5 - √3 is 5 + √3

We have;

\sf \dashrightarrow \ \dfrac{4}{\sqrt{6} - \sqrt{4}}

In order to rationalise the denominator, we'll have to multiply the numerator and denominator by the conjugate of the denominator.

The conjugate of the denominator is √6 + √4, on multiplying it with the numerator and denominator we get;

\sf \dashrightarrow \ \dfrac{4}{\sqrt{6} - \sqrt{4}} \ \times \ \dfrac{\sqrt{6} + \sqrt{4}}{\sqrt{6} + \sqrt{4}}

\sf \dashrightarrow \ \dfrac{4\Big\{\sqrt{6} + \sqrt{4}\Big\}}{\Big\{\sqrt{6} - \sqrt{4}\Big\}\Big\{\sqrt{6} + \sqrt{4}\Big\}}

On applying the identity (a - b)(a + b) = a² - b² we get;

\sf \dashrightarrow \ \dfrac{4\Big\{\sqrt{6} + \sqrt{4}\Big\}}{\Big\{\sqrt{6}\Big\}^{2} - \Big\{\sqrt{4}\Big\}^{2}}

\sf \dashrightarrow \ \dfrac{4\Big\{\sqrt{6} + \sqrt{4}\Big\}}{6 - 4}

\sf \dashrightarrow \ \dfrac{4\Big\{\sqrt{6} + \sqrt{4}\Big\}}{2}

On dividing 4 and 2 we get;

\sf \dashrightarrow \ \dfrac{2\Big\{\sqrt{6} + \sqrt{4}\Big\}}{1}

\sf \dashrightarrow \ \dfrac{2\sqrt{6} + 2\sqrt{4}}{1}

\sf \dashrightarrow \ \dfrac{2\sqrt{6} + 2\sqrt{2 \times 2}}{1}

\sf \dashrightarrow \ \dfrac{2\sqrt{6} + (2 \times 2)}{1}

\sf \dashrightarrow \ \dfrac{2\sqrt{6} + 4}{1}

‎‎

Hence rationalised.

Answered by Anonymous
97

Answer:

Question :-

Rationalise the denominator:-

4 \div \sqrt{6} - \sqrt{4}

Required Answer :-

 \frac{ 4\sqrt{6}  + 4 \sqrt{4}  }{2}

Note :-

Plz refer to the attachment

Attachments:
Similar questions