Math, asked by Mister360, 1 month ago

Rationalise the denominator
\boxed{\tt \dfrac{ (\sqrt{7 }  - 1)}{( \sqrt{7} + 1) }}

Answers

Answered by Anonymous
13

\Huge \purple {\boxed {\underline {\mathbb {ANSWER:}}}}

\Huge \pink {\tt {\frac {(\sqrt{7 } - 1)}{( \sqrt{7} + 1) }}}

 \huge \pink {\tt { \implies \frac {(\sqrt{7} - 1)}{(\sqrt{7}+1)} \times \frac{(\sqrt{7}-1)}{(\sqrt{7}-1)}}}

 \huge \pink {\tt { \implies \frac {{(\sqrt{7}-1)}^{2} }{7-1}}}

 \huge \pink {\tt { \implies \frac{8-2\sqrt{7}}{6}}}

 \huge \pink {\tt { \implies \frac{2(4-\sqrt{7})}{6}}}

 \huge \pink {\tt { \implies \frac{4-\sqrt{7}}{3}}}

Answered by Anonymous
19

 \huge \text{ \blue{Question - }}

 \longrightarrow{\tt \dfrac{ (\sqrt{7 } - 1)}{( \sqrt{7} + 1) }}

 \huge \text{ \blue{Answer - }}

 \longrightarrow{\tt \dfrac{ (\sqrt{7 } - 1)}{( \sqrt{7} + 1) }}

First we will multiply numerator and denominator by √7-1

 \Longrightarrow{\tt \dfrac{ (\sqrt{7 } - 1)}{( \sqrt{7} + 1) } \times\dfrac{ (\sqrt{7 } - 1)}{( \sqrt{7}  -  1) }  }

Identity we have to use :-

  • Identity we have to use :-( a - b )² = ( a² + b² - 2ab )

  • Identity we have to use :-( a - b )² = ( a² + b² - 2ab )a² - b² = ( a + b ) ( a - b )

 \Longrightarrow{\tt \dfrac{ (\sqrt{7 } - 1) ^{2} }{( \sqrt{7} ) ^{2} + (1)^{2}}}

 \Longrightarrow{\tt \dfrac{ (\sqrt{7 }) ^{2}   + ( 1) ^{2}  - 2( \sqrt{7})(1) }{( \sqrt{7} ) ^{2} + (1)^{2}}}

 \Longrightarrow{\tt  \dfrac{7 + 1 - 2 \sqrt{7} }{7 - 1} }

 \Longrightarrow{\tt  \dfrac{8 - 2 \sqrt{7} }{6} }

 \Longrightarrow{\tt  \dfrac{ 2(4-\sqrt{7}) }{6} }

 \Longrightarrow \red{{\tt  \dfrac{ 2- \sqrt{7} }{3}} }

Similar questions