Math, asked by TyrannosaurusRex1, 1 month ago

Rationalise The Denominator \frac{1}{1+\sqrt{2}+\sqrt{3} }

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given irrational number is

\rm :\longmapsto\:\dfrac{1}{1 +  \sqrt{2}  +  \sqrt{3} }

can be rewritten as

\rm \:  =  \:\dfrac{1}{ \sqrt{3} +  \sqrt{2}   + 1}

So, on rationalizing the denominator, we get

\rm \:  =  \:\dfrac{1}{ (\sqrt{3} +  \sqrt{2})+ 1} \times \dfrac{( \sqrt{3}  +  \sqrt{2} ) - 1}{( \sqrt{3}  +  \sqrt{2) - 1} }

We know,

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \:\dfrac{ \sqrt{3}  +  \sqrt{2} - 1 }{ {( \sqrt{3}  +  \sqrt{2} )}^{2}  -  {1}^{2} }

\rm \:  =  \:\dfrac{ \sqrt{3} +  \sqrt{2}   - 1}{3 + 2 + 2 \times  \sqrt{2}  \times  \sqrt{3}  - 1}

\rm \:  =  \:\dfrac{ \sqrt{3} +  \sqrt{2}   - 1}{5 + 2 \sqrt{6}  - 1}

\rm \:  =  \:\dfrac{ \sqrt{3} +  \sqrt{2}   - 1}{4 + 2 \sqrt{6}}

\rm \:  =  \:\dfrac{ \sqrt{3} +  \sqrt{2}   - 1}{4 + 2 \sqrt{6}} \times \dfrac{4 - 2 \sqrt{6} }{4 - 2 \sqrt{6} }

\rm \:  =  \:\dfrac{4 \sqrt{3}  + 4 \sqrt{2} - 4 - 2 \sqrt{18}  - 2 \sqrt{12}   + 2 \sqrt{6} }{ {4}^{2}  -  {(2 \sqrt{6} )}^{2} }

\rm \:  =  \:\dfrac{4 \sqrt{3}  + 4 \sqrt{2} - 4 - 6\sqrt{2}  - 4\sqrt{3}   + 2 \sqrt{6} }{16 - 24 }

\rm \:  =  \:\dfrac{ - 2 \sqrt{2} - 4  + 2 \sqrt{6} }{ - 8}

\rm \:  =  \:\dfrac{ - 2 (\sqrt{2} + 2 -  \sqrt{6} )}{ - 8}

\rm \:  =  \:\dfrac{\sqrt{2} + 2 -  \sqrt{6} }{4}

Alter method

\rm :\longmapsto\:\dfrac{1}{1 +  \sqrt{2}  +  \sqrt{3} }

\rm \:  =  \:\dfrac{1}{ \sqrt{3} +  \sqrt{2}   + 1}

\rm \:  =  \:\dfrac{1}{ \sqrt{3} +  (\sqrt{2}   + 1)}  \times \dfrac{ \sqrt{3} - ( \sqrt{2}   + 1)}{ \sqrt{3}  - ( \sqrt{2}  + 1)}

\rm \:  =  \:\dfrac{ \sqrt{3}  -  \sqrt{2}  - 1}{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2}  - 1)}^{2} }

\rm \:  =  \:\dfrac{ \sqrt{3}  -  \sqrt{2}  - 1}{ {3 - (2 + 1 + 2 \sqrt{2} )} }

\rm \:  =  \:\dfrac{ \sqrt{3}  -  \sqrt{2}  - 1}{ {3 - 2  - 1 - 2 \sqrt{2}} }

\rm \:  =  \:\dfrac{ \sqrt{3}  -  \sqrt{2}  - 1}{ { - 2 \sqrt{2}} }

\rm \:  =  \:\dfrac{ \sqrt{3}  -  \sqrt{2}  - 1}{ { - 2 \sqrt{2}} }  \times \dfrac{ \sqrt{2} }{ \sqrt{2} }

\rm \:  =  \:\dfrac{ \sqrt{6} - 2 -  \sqrt{2}  }{ - 4}

\rm \:  =  \:\dfrac{\sqrt{2} + 2 -  \sqrt{6} }{4}

Hence,

\bf\implies \:\boxed{ \tt{ \:  \frac{1}{ \sqrt{3}  +  \sqrt{2} + 1 }  =  \:\dfrac{\sqrt{2} + 2 -  \sqrt{6} }{4}}}

Similar questions