Math, asked by nayra77, 1 year ago

Rationalise the denominator

 \frac{1}{ \sqrt{13} -  \sqrt{5}  }

Answers

Answered by Anonymous
11
Hola Mate!!

Your answer :-

 =  >  \frac{1}{ \sqrt{13} -  \sqrt{5}  }  \\  \\  =  >  \frac{1}{ \sqrt{13} -  \sqrt{5}  }  \times  \frac{ \sqrt{13}  +  \sqrt{5} }{ \sqrt{13}  +  \sqrt{5} }  \\  \\  =  >  \frac{ \sqrt{13} +  \sqrt{5}  }{ {( \sqrt{13} )}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  >  \frac{ \sqrt{13}  +  \sqrt{5} }{13 - 5 }  \\  \\  =  >  \frac{ \sqrt{13}  +  \sqrt{5} }{8}

☆ Hope it helps ☆
Answered by Anonymous
3
hey!!

given :- 1/(√13-√5)

 =  \frac{1}{ \sqrt{13}  -  \sqrt{5} }  \times  \frac{ \sqrt{13}  +  \sqrt{5} }{ \sqrt{13} +  \sqrt{5}  }  \\  \\  =  \frac{ \sqrt{13}  +  \sqrt{5} }{( \sqrt{13}  -  \sqrt{5} )( \sqrt{13}  +  \sqrt{5}) }  \\  \\  =  \frac{ \sqrt{13}  +  \sqrt{5} }{ ({ \sqrt{13} )}^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\  =  \frac{ \sqrt{13}  +  \sqrt{5} }{13 - 5}  \\  \\  =  \frac{ \sqrt{13} +  \sqrt{5}  }{8}

cheers!!!
Similar questions