Math, asked by islam2356, 2 months ago

Rationalise the denominator

\frac{2}{\sqrt{5} +\sqrt{3} +2}

Answers

Answered by vaibhav123422
1

Answer:

To rationalize the denominator, you must multiply both the numerator and the denominator by the conjugate of the denominator. Remember to find the conjugate all you have to do is change the sign between the two terms. Step 2: Distribute (or FOIL) both the numerator and the denominator.

Answered by brainlyehsanul
124

Step-by-step explanation:

Given :

 \frac{2}{ \sqrt{5} +  \sqrt{3}  + 2 }

Solution :

 =  >  \frac{2}{ \sqrt{5}  +  \sqrt{3} + 2 }  \times  \frac{( \sqrt{5}  +  \sqrt{3} ) - 2}{( \sqrt{5} +  \sqrt{3})  - 2 }

 =  >  \frac{2( \sqrt{5} +  \sqrt{3}  - 2) }{( \sqrt{5}  +  \sqrt{3} ) ^{2}  -  {2}^{2} }

 =  >  \frac{2( \sqrt{5}  +  \sqrt{3}  - 2)}{5 + 3 + 2 \sqrt{5}  \sqrt{3}  - 4}

 =  >  \frac{2( \sqrt{5} +  \sqrt{3}   - 2)}{4 + 2 \sqrt{15} }

 =  >  \frac{ \sqrt{5}  +  \sqrt{3} - 2 }{2 +  \sqrt{15} }

 =  >  \frac{ \sqrt{5} +  \sqrt{3}  - 2 }{2 +  \sqrt{15} }  \times  \frac{2 -  \sqrt{15} }{2 -  \sqrt{15} }

 =  >  \frac{2 \sqrt{5} + 2 \sqrt{3}   - 4 -  \sqrt{5} \sqrt{15}  -  \sqrt{3}   \sqrt{15} + 2 \sqrt{15}  }{ {2}^{2}  - ( \sqrt{15} ) ^{2} }

 =  >  \frac{2 \sqrt{5} + 2 \sqrt{3}   - 4 - 5 \sqrt{3} - 3 \sqrt{5}   + 2 \sqrt{15} }{4 - 15}

 =  >  \frac{ -  \sqrt{5} - 3 \sqrt{3}  - 4 + 2 \sqrt{15}  }{ - 11}

 =  >  \frac{ \sqrt{5} + 3 \sqrt{3}  - 2  \sqrt{15} + 4 }{11} .

Hence :

The rationalise denominator is 11.

Brainly Question Number :

https://brainly.in/question/39932568?utm_source=android&utm_medium=share&utm_campaign=question

Similar questions