Math, asked by missyou1235, 2 months ago

Rationalise the denominator

\frac{2}{\sqrt{5} +\sqrt{3} +2}

Answers

Answered by brainlyehsanul
133

Step-by-step explanation:

Given :

 \frac{2}{ \sqrt{5} +  \sqrt{3}  + 2 }

Solution :

 =  >  \frac{2}{ \sqrt{5}  +  \sqrt{3} + 2 }  \times  \frac{( \sqrt{5}  +  \sqrt{3} ) - 2}{( \sqrt{5} +  \sqrt{3})  - 2 }

 =  >  \frac{2( \sqrt{5} +  \sqrt{3}  - 2) }{( \sqrt{5}  +  \sqrt{3} ) ^{2}  -  {2}^{2} }

 =  >  \frac{2( \sqrt{5}  +  \sqrt{3}  - 2)}{5 + 3 + 2 \sqrt{5}  \sqrt{3}  - 4}

 =  >  \frac{2( \sqrt{5} +  \sqrt{3}   - 2)}{4 + 2 \sqrt{15} }

 =  >  \frac{ \sqrt{5}  +  \sqrt{3} - 2 }{2 +  \sqrt{15} }

 =  >  \frac{ \sqrt{5} +  \sqrt{3}  - 2 }{2 +  \sqrt{15} }  \times  \frac{2 -  \sqrt{15} }{2 -  \sqrt{15} }

 =  >  \frac{2 \sqrt{5} + 2 \sqrt{3}   - 4 -  \sqrt{5} \sqrt{15}  -  \sqrt{3}   \sqrt{15} + 2 \sqrt{15}  }{ {2}^{2}  - ( \sqrt{15} ) ^{2} }

 =  >  \frac{2 \sqrt{5} + 2 \sqrt{3}   - 4 - 5 \sqrt{3} - 3 \sqrt{5}   + 2 \sqrt{15} }{4 - 15}

 =  >  \frac{ -  \sqrt{5} - 3 \sqrt{3}  - 4 + 2 \sqrt{15}  }{ - 11}

 =  >  \frac{ \sqrt{5} + 3 \sqrt{3}  - 2  \sqrt{15} + 4 }{11} .

Hence :

The rationalise denominator is 11.

Brainly Question Number :

https://brainly.in/question/39934064?utm_source=android&utm_medium=share&utm_campaign=question

Answered by roseme7
2

Step-by-step explanation:

The rationalise denominator is 11.

Similar questions