Math, asked by lubuhmygreatbro, 1 year ago

Rationalise the denominator


 \frac{5}{ 7 +  \sqrt{5}}

Answers

Answered by Anonymous
17
Hola Mate!!

Your answer :-

 = > \frac{5}{7 + \sqrt{5} } \\ \\ = > \frac{5}{7 + \sqrt{5} } \times \frac{7 - \sqrt{5} }{7 - \sqrt{5} } \\ \\ = > \frac{5(7 - \sqrt{5} )}{ {( 7)}^{2} - {( \sqrt{5}) }^{2} } \\ \\ = > \frac{35 - 5 \sqrt{5} }{49 - 5} \\ \\ = > \frac{35 - 5\sqrt{5} }{44}

☆ Hope it helps ☆

Anonymous: ^_^
Anonymous: Thanka sho much deari
Anonymous: :grin:
Anonymous: ma'am, one mistake.. u forgot to write 5 with √5 in the last step :-)
Anonymous: thnka so much for crcting
Anonymous: np ma'am :))
Anonymous: Don't say ma'am
Anonymous: ok sis
Anonymous: yep
Anonymous: ☺☺
Answered by Anonymous
6
hey!!!

your answer is here..

given :- 5/7+√5

 =  \frac{5}{7 +  \sqrt{5} }  \times  \frac{7 -  \sqrt{5} }{7 -  \sqrt{5} } \\   \\ =  \frac{5(7 -  \sqrt{5}) }{(7 +  \sqrt{5})(7 -  \sqrt{5} ) }   \\  \\  =  \frac{5(7  -  \sqrt{5} ) }{ {(7)}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  \frac{5(7 -  \sqrt{5}) }{49 - 5}  \\  \\  =  \frac{5(7 -  \sqrt{5}) }{44}  \\  \\  =  \frac{35 - 5 \sqrt{5} }{44}

cheers!!!


Anonymous: fab! ^_^
Anonymous: my pleasure :D
Anonymous: xD
Similar questions