Math, asked by lubuhmygreatbro, 1 year ago

Rationalise the denominator

 \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

Answers

Answered by Anonymous
10
Hola Mate!!

Your answer :-

 =  >  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \\  \\  =  >  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }  \\  \\  =  >  \frac{ {(5 +  \sqrt{3} )}^{2} }{ {( 5 )}^{2}  -   { (\sqrt{3} )}^{2} }  \\  \\  =  >  \frac{ ({5})^{2} +  {( \sqrt{3} )}^{2}  + 2 \times 5 \times  \sqrt{3}  }{25 - 3}  \\  \\  =  >  \frac{25 + 3 + 10 \sqrt{3} }{22}  \\  \\  =  >  \frac{28 + 10 \sqrt{3} }{22}  \\  \\  =  >  \frac{14 + 5 \sqrt{3} }{11}

☆ Hope it helps ☆

Anonymous: Nyc answer
Anonymous: Thanka ^_^
Anonymous: Wlcm (^_^)
Answered by ayeshakhan12
9

 \frac{5 +  \sqrt{3} }{5  -  \sqrt{3} }  \\  =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }   \times  \frac{ \sqrt{3  }  + 5}{ \sqrt{3}  + 5}  \\  =   \frac{5 \sqrt{3}  + 25 + 3 + 5 \sqrt{3} }{ {5}^{2}  -    { (\sqrt{3} )}^{2} }  \\  =  \frac{10 \sqrt{3} + 28 }{25 - 3}  \\  = \frac{ 10\sqrt{3} + 28 }{22}  \\    = \frac{2(5 \sqrt{3}  + 14)}{22}  \\  =  \frac{5 \sqrt{3}  + 14}{11}
Heyy friend your answer is here
Similar questions