Math, asked by Anonymous, 7 months ago

rationalise the denominator
 \frac{7 +  \sqrt{6} }{7 -  \sqrt{6} }

Answers

Answered by Anonymous
6

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve this and rationalise the denominator

 \frac{7 + \sqrt{6} }{7 - \sqrt{6} }

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

⟹ \frac{7 +  \sqrt{6} }{7 -  \sqrt{6} }  \times  \frac{7 +  \sqrt{6} }{7 +  \sqrt{6} }

⟹ \frac{ {(7 +  \sqrt{6}) }^{2} }{ {(7)}^{2}  -  {( \sqrt{6}) }^{2} }

⟹ \frac{ {(7)}^{2}  +  {( \sqrt{6} )  }^{2} + 2(7)( \sqrt{6} ) }{49 - 6}

⟹ \frac{49 + 6 + 14 \sqrt{6} }{43}

⟹ \frac{55 + 14 \sqrt{6} }{43} ✓

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
0

 \bf \huge \underbrace{answer} \\  \\  \tt \: rationalising \: the \:  \: denominator \\  \\  \tt \mapsto \:  \frac{7 +  \sqrt{6} }{7 -  \sqrt{6} }  \\  \\  \tt \mapsto \:  \frac{7 +  \sqrt{6} }{7 -  \sqrt{6} }  \times  \frac{7 +  \sqrt{6} }{7 +  \sqrt{6} }  \\  \\  \tt \mapsto \:  \frac{ {(7 +  \sqrt{6} })^{2} }{ {(7)}^{2}   -  {( \sqrt{6} })^{2} }  \\  \\  \tt \mapsto \:  \frac{ {(7)}^{2} + 2(7)( \sqrt{6}  ) +  {( \sqrt{6} })^{2} }{49 - 6}  \\  \\  \tt \mapsto \:  \frac{49 + 14 \sqrt{6}  + 6}{43}  \\  \\  \tt \mapsto \:  \frac{55 + 14 \sqrt{6} }{43}

Similar questions