Math, asked by Preetii2004, 1 year ago

Rationalise the denominator.

 \frac{ \sqrt{9} }{ \sqrt{8} -  \sqrt{5}  }

Answers

Answered by Anonymous
7
Hola Mate!!

Your answer :-

 =  >  \frac{ \sqrt{9} }{ \sqrt{8}  -  \sqrt{5} }  \\  \\  =  >  \frac{ \sqrt{3 \times 3} }{ \sqrt{2 \times 2 \times 2} -  \sqrt{5}  } \\  \\  =  >  \frac{3}{2 \sqrt{2}  -  \sqrt{5} }  \\  \\  =  >  \frac{3}{2 \sqrt{2}  -  \sqrt{5} }  \times  \frac{2 \sqrt{2}  +  \sqrt{5} }{2 \sqrt{2} +  \sqrt{5}  }  \\  \\  =  >  \frac{3(2 \sqrt{2}  +  \sqrt{5} )}{ {(2 \sqrt{2}) }^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  >  \frac{6 \sqrt{2}  + 3 \sqrt{5} }{8 - 5}  \\  \\  =  >  \frac{6 \sqrt{2}  + 3 \sqrt{5} }{3}  \\  \\  =  >  \frac{6 \sqrt{2} }{3}  +  \frac{3 \sqrt{5} }{3}  \\  \\  =  > 2 \sqrt{2}  +  \sqrt{5}

☆ Hope it helps ☆
Answered by TooFree
6

 \dfrac{\sqrt{9}}{\sqrt{8} - \sqrt{5}}

-

Rationalise the denominator:

 = \dfrac{\sqrt{9}}{\sqrt{8} - \sqrt{5}}    \times \dfrac{\sqrt{8} + \sqrt{5}}{\sqrt{8} + \sqrt{5}}

  = \dfrac{\sqrt{9} (\sqrt{8} + \sqrt{5} )}{8 - 5}

  = \dfrac{3 (2\sqrt{2} + \sqrt{5} )}{3}

 = 2\sqrt{2} + \sqrt{5}

-

Answer: 2√2 + √5

Similar questions