Math, asked by piyush418, 1 year ago

rationalise the denominators of these questions

Attachments:

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
idenities \: used \:  \\  {(a + b)}^{2}  =  {a}^{2}  + {b}^{2} + 2ab \\  \\ {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}   - 2ab \\  \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\   \\ 1) \\  \frac{ \sqrt{11}  -  \sqrt{7} }{ \sqrt{11} +  \sqrt{7}  }  = a - b \sqrt{77}  \\  \\ on \: rationalizing \: we \: get \\  \\  \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}  +  \sqrt{7} }  \times  \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}  -  \sqrt{7} }   \\  \\  =  \frac{ {( \sqrt{11} )}^{2} +  { \sqrt{7}) }^{2}   - 2 \times  \sqrt{11}  \times  \sqrt{7} }{ {( \sqrt{11}) }^{2} -  {( \sqrt{7} )}^{2}  }  \\  \\  =  \frac{11 + 7 - 2 \sqrt{77} }{11 - 7}  \\  \\  =  \frac{18 - 2 \sqrt{77} }{4}  \\  \\  =  \frac{9 -  \sqrt{77} }{2}  \\  \\ a =  \frac{9}{2}  \\  \\ b =  \frac{1}{2}  \\  \\ 2) \\  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a + b \sqrt{5}  \\  \\  =  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  \\  \\  =  \frac{ {(4)}^{2} +  {(3 \sqrt{5}) }^{2} + 2 \times 4 \times 3 \sqrt{5}   }{ {(4)}^{2} -  {(3 \sqrt{5}) }^{2}  }  \\  \\  =  \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}  \\  \\  =  \frac{60 + 24 \sqrt{5} }{ - 29}  \\  \\  =  \frac{ - 60 - 24 \sqrt{5} }{29}  \\  \\ a =  \frac{ - 60}{29}  \\  \\ b =  \frac{ - 24}{29}  \\  \\ 3) \\   \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }  =  \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 }  \\  \\   \frac{ \sqrt{5} - 2 }{ \sqrt{5}  + 2}  \times  \frac{ \sqrt{5} - 2 }{ \sqrt{5}  - 2}  =  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  - 2}  \times  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  + 2}  \\  \\  \frac{ {( \sqrt{5}) }^{2}  +  {(2)}^{2}  - 2 \times  \sqrt{5}  \times 2}{ {( \sqrt{5}) }^{2}  -  {(2)}^{2} }  =  \frac{ {( \sqrt{5} )}^{2}  +  {(2)}^{2} + 2 \times  \sqrt{5}  \times 2 }{ {( \sqrt{5}) }^{2} -  {(2)}^{2}  }  \\  \\  \frac{5 + 4 - 4 \sqrt{5} }{5 - 4}  =  \frac{5 + 4 + 4 \sqrt{5} }{5 - 4}  \\  \\   9 - 4 \sqrt{5}  = 9 + 4 \sqrt{5}  \\  \\   - 4 \sqrt{5}   (is \: not \: equal \: to) 4 \sqrt{5}   \\ \\ 4) \\  \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }  \times  \frac{7 + 3 \sqrt{5} }{7 + 3 \sqrt{5} }  \\  \\  =  \frac{ {(7)}^{2}  +  {(3 \sqrt{5}) }^{2} + 2 \times 7 \times 3 \sqrt{5} }{ {(7)}^{2} -  {(3 \sqrt{5}) }^{2} }  \\  \\  =  \frac{49 + 45 + 42 \sqrt{5} }{49 - 45}  \\  \\  =  \frac{94 + 42}{4}  \\  \\  =  \frac{47 + 21}{2}  \\  \\ 5) \\  \frac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} }  = 47a + b \sqrt{3}  \\  \\  =  \frac{5 + 2 \sqrt{3} }{7 - 4 \sqrt{3} }   \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\  =  \frac{5 \times 7 + 5 \times 4 \sqrt{3} + 2 \sqrt{3} \times 7 + 2 \sqrt{3} \times 4 \sqrt{3} }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2}  }  \\  \\  =  \frac{35 + 20 \sqrt{3} +14 \sqrt{3}  + 24 }{49 - 48}  \\  \\  =  59 + 34 \sqrt{3}  \\  \\ a = 1.25 (approx)\\  \\ b = 34



Hope this helps!!!!

@Mahak24

Thanks...
☺☺
Similar questions