rationalise the denominators root3+root 7 upon root 7 - root3
Answers
Answer:
\frac{4}{ \sqrt{7} + \sqrt{3} }
7
+
3
4
By Rationalization,
\begin{gathered}\frac{4}{ \sqrt{7} + \sqrt{3} } \times \frac{ \sqrt{7} - \sqrt{3} }{ \sqrt{7} - \sqrt{3} } \\ \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{( \sqrt{7} + \sqrt{3})( \sqrt{7} - \sqrt{3}) }\end{gathered}
7
+
3
4
×
7
−
3
7
−
3
(
7
+
3
)(
7
−
3
)
4(
7
−
3
)
On denominator, by identity, a² - b² = (a + b)(a - b)
\begin{gathered}\frac{4( \sqrt{7} - \sqrt{3}) }{ {( \sqrt{7} })^{2} - {( \sqrt{3} })^{2} } \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{7 - 3} \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{4} \\ \\ \\ \sqrt{7} - \sqrt{3}\end{gathered}
(
7
)
2
−(
3
)
2
4(
7
−
3
)
7−3
4(
7
−
3
)
4
4(
7
−
3
)
7
−
3
Step-by-step explanation:
please refer the above image for step by step explanation and your answer is 12 root 21 by 4 if this answer is helpful helpful for you please mark me brain list and thank my answer