Math, asked by mohdsameerkhan4353, 6 months ago

rationalise the denominators root3+root 7 upon root 7 - root3​

Answers

Answered by shiv2524
0

Answer:

\frac{4}{ \sqrt{7} + \sqrt{3} }

7

+

3

4

By Rationalization,

\begin{gathered}\frac{4}{ \sqrt{7} + \sqrt{3} } \times \frac{ \sqrt{7} - \sqrt{3} }{ \sqrt{7} - \sqrt{3} } \\ \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{( \sqrt{7} + \sqrt{3})( \sqrt{7} - \sqrt{3}) }\end{gathered}

7

+

3

4

×

7

3

7

3

(

7

+

3

)(

7

3

)

4(

7

3

)

On denominator, by identity, a² - b² = (a + b)(a - b)

\begin{gathered}\frac{4( \sqrt{7} - \sqrt{3}) }{ {( \sqrt{7} })^{2} - {( \sqrt{3} })^{2} } \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{7 - 3} \\ \\ \\ \frac{4( \sqrt{7} - \sqrt{3} )}{4} \\ \\ \\ \sqrt{7} - \sqrt{3}\end{gathered}

(

7

)

2

−(

3

)

2

4(

7

3

)

7−3

4(

7

3

)

4

4(

7

3

)

7

3

Answered by priyankajha12
1

Step-by-step explanation:

please refer the above image for step by step explanation and your answer is 12 root 21 by 4 if this answer is helpful helpful for you please mark me brain list and thank my answer

Attachments:
Similar questions