Math, asked by khushipundir212226, 2 days ago

Rationalise the denomineter
1  \  \div    \sqrt[]{5}  +  \sqrt[]{3}  +  \sqrt[]{8}

Answers

Answered by jitendra12iitg
1

Answer:

The answer is \dfrac{5\sqrt 3+3\sqrt 5-2\sqrt{30}}{30}

Step-by-step explanation:

\dfrac{1}{\sqrt 5+\sqrt 3+\sqrt8}=\dfrac{1}{(\sqrt 5+\sqrt 3)+\sqrt8}\times \dfrac{(\sqrt 5+\sqrt 3)-\sqrt8}{(\sqrt 5+\sqrt 3)-\sqrt8}\\\\=\dfrac{\sqrt 5+\sqrt 3-\sqrt 8}{(\sqrt 5+\sqrt 3)^2-(\sqrt 8)^2}=\dfrac{\sqrt 5+\sqrt 3-\sqrt 8}{5+3+2\sqrt{15}-8}} \\\\=\dfrac{\sqrt 5+\sqrt 3-\sqrt 8}{2\sqrt{15}}} \times \dfrac{\sqrt {15}}{\sqrt {15}}\\\\=\dfrac{5\sqrt 3+3\sqrt 5-2\sqrt{30}}{30}

Note : Rationalizing factor of \sqrt 5+\sqrt 3+\sqrt 8 can be taken as \sqrt 5+\sqrt 3-\sqrt 8

Similar questions