Rationalise the dinomenator √5-2/√5+2 X√5/√5
What is the Answer
Answers
Step-by-step explanation:
Correct Question:-
Rationalise the dinomenator √5-2/√5+2
Solution:-
Let's solve the problem
We have,
√5 - 2/ √5 + 2
The denominator is √5+2. Multiplying the numerator and denomination by √5-2, we get
=> √5-2/√5+2 × √5-2/√5-2
=> (√5-2)(√5-2)/(√5+2)(√5+2)
⬤ Applying Algebraic Identity
- (a-b)² = a² + b² - 2ab to the numerator and
- (a+b)(a-b) = a² - b² to the denominator
We get,
=> (√5-2)²/(√5)²-(2)²
=> (√5)² + (2)² - 2 × √5 × 2 / 5 - 4
=> 5 + 4 - 4√5 /1
=> 9 - 4√5.
Hence, the denominator is rationalised.
Answer:-
- 9 - 4√5
Used formulae:-
- (a - b)² = a² + b² - 2ab
- (a+b)(a-b) = a² - b²
Answer:
Rationalise the dinomenator √5-2/√5+2
Solution:-
Let's solve the problem
We have,
√5 - 2/ √5 + 2
The denominator is √5+2. Multiplying the numerator and denomination by √5-2, we get
=> √5-2/√5+2 × √5-2/√5-2
=> (√5-2)(√5-2)/(√5+2)(√5+2)
⬤ Applying Algebraic Identity
(a-b)² = a² + b² - 2ab to the numerator and
(a+b)(a-b) = a² - b² to the denominator
We get,
=> (√5-2)²/(√5)²-(2)²
=> (√5)² + (2)² - 2 × √5 × 2 / 5 - 4
=> 5 + 4 - 4√5 /1
=> 9 - 4√5.
Hence, the denominator is rationalised.
Answer:-
9 - 4√5
Used formulae:-
(a - b)² = a² + b² - 2ab
(a+b)(a-b) = a²
pls mark as brainliest
Step-by-step explanation: