Math, asked by seejasajith78, 3 months ago

Rationalise the dinominator
urgent answer plz no spamming​

Attachments:

Answers

Answered by JyotShrimakar
1

Answer:

\frac{ - 5 \sqrt{3}  - 5 \sqrt{5} }{2}

Step-by-step explanation:

 \frac{5}{ \sqrt{3}  -  \sqrt{5} }

Now, in order to rationalize the denominator, we need to multiply by the opposite pair i.e., 3+5 in numerator and denominator....

 =  \frac{5}{ \sqrt{3} -  \sqrt{5}  }  \times  \frac{ \sqrt{3}  +  \sqrt{5}  }{\sqrt{3}  +  \sqrt{5} }

 = \frac{ 5( \sqrt{3}  +  \sqrt{5} )}{ { (\sqrt{3} )}^{2}  -  {( \sqrt{5} )}^{2} }   \: ( a+b )( a-b ) =  {a}^{2}  -  {b}^{2}

 =  \frac{5 \sqrt{3}  + 5 \sqrt{5} }{3 - 5}

 =  \frac{5 \sqrt{3}  + 5 \sqrt{5} }{ - 2}

 =  \frac{ - (5 \sqrt{3}  + 5 \sqrt{5} )}{2}

 =  \frac{ - 5 \sqrt{3}  - 5 \sqrt{5} }{2}

Similar questions