Math, asked by NidhiTamang, 4 months ago

Rationalise the following
3-2root2/3+2root2​

Answers

Answered by Flaunt
33

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }

Step by step explanation:

  1. Here ,to rationalise first we check the denominator value and then we will multiply to both numerator and denominator with the opposite sign of Denominator.e.g.,=> 3+√2 opposite sign =>3-√2.

\sf \longmapsto \dfrac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \times  \dfrac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }

Identity used here :-

(a-b)²=a²+b²-2ab

(a+b)(a-b)=a²-b²

\sf \longmapsto \dfrac{ {(3 - 2 \sqrt{2} )}^{2} }{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2} }

\sf \longmapsto \dfrac{ {(3)}^{2} +  {(2 \sqrt{2} )}^{2}  - 2(3)(2 \sqrt{2} ) }{9 - 8}

\sf \longmapsto \dfrac{9 + 8 - 12 \sqrt{2} }{1}

\sf \longmapsto \bold{17 - 12 \sqrt{2} }

Extra information=>

Rationalising means removing root values from the denominator and shifts towards numerator side.

Answered by memelordedrick
0

Answer:

Step-by-step explanation:

Here, to rationalise first we check the denominator value and then we will multiply to both the numerator and denominator with the opposite sign of the Denominator. e.g.,=> 3+√2 opposite sign =>3-√2.

The identity used here:-

(a-b)²=a²+b²-2ab

(a+b)(a-b)=a²-b²

Similar questions