Rationalise the following
Answers
Step-by-step explanation:
Solution :-
Method-1:-
See the above attachment
Method-2:-
Given that
[1/(√4+√5)]+[1/(√5+√6)]+[1/(√6+√7)]+[1/(√7+√8)]
+[1/(√8+√9]
We know that
The Rationalising factor of√a+√b =√a-√b
Rationalising factor of √4+√5 =√4-√5
Rationalising factor of √5+√6=√5-√6
Rationalising factor of √6+√7 = √6-√7
Rationalising factor of√7+√8 =√7-√8
Rationalising factor of√8+√9 =√8-√9
On Rationalising the each denominator then
I. 1/(√4+√5)]×[(√4-√5)/(√4-√5)]
=> (√4-√5)/(4-5)
=> (√4-√5)/-1
=√5-√4-------(1)
II. [1/(√5+√6)]×[(√5-√6)/(√5-√6)]
=>(√5-√6)/(5-6)
=>(√5-√6)/-1
=>√6-√5-------(2)
III. [1/(√6+√7)]×[(√6-√7)/(√6-√7)]
=>(√6+√7)/(6-7)
=>(√6-√7)/-1
=>√7-√6------(3)
IV. [1/(√7+√8)]×[(√7-√8)/(√7-√8)]
=>(√7-√8)/(7-8)
=>(√7-√8)/-1
=>√8-√7--------(4)
V. [1/(√8+√9]×[(√8-√9)/(√8-√9)]
=>(√8-√9)/(8-9)
=>(√8-√9)/-1
=>√9-√8------(5)
On adding above all
=>√5-√4+√6-√5+√7-√6+√8-√7+√9-√8
=>√9-√4
=>3-2
=1
Answer:-
The answer for the given problem is 1
Used formulae:-
1.The Rationalising factor of√a+√b =√a-√b
2.(a+b)(a-b)=a^2-b^2