Math, asked by upsales, 2 months ago

Rationalise the following​

Attachments:

Answers

Answered by Anonymous
16

Answer

  • -√6 + √12

To Do

  • To rationalize the denominator \cfrac{3 \sqrt{2} }{\sqrt{3} + \sqrt{6} }

Step By Step Explanation

Given a number \cfrac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6} }. We need to rationalize it's denominator.

So let's do it !!

Using Identity

 \dag \underline{\boxed{ \sf{ \purple{(x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}}}

Solution

\longmapsto\tt\cfrac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6} } \\  \\ \longmapsto\tt\cfrac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6} } \times  \cfrac{ \sqrt{3} -  \sqrt{6} }{ \sqrt{3} -  \sqrt{6} }  \\  \\\longmapsto\tt \cfrac{3 \sqrt{2}  \times( \sqrt{3} -  \sqrt{6})}{({\sqrt{3})}^{2}  -  {(\sqrt{6})}^{2} } \\  \\ \longmapsto\tt \cfrac{3 \sqrt{2} \times \sqrt{3} - 3 \sqrt{2} \times \sqrt{6}}{3 - 6} \\  \\\longmapsto\tt  \cfrac{3 \sqrt{6} - 3 \sqrt{12} }{ - 3} \\  \\\longmapsto\tt  \cfrac{ \not3( \sqrt{6} -  \sqrt{12})}{ - \not3}  \\  \\\longmapsto\tt  -  (\sqrt{6} -  \sqrt{12}) \\  \\\longmapsto\bf{\green{-  \sqrt{6} +  \sqrt{12}}}

Hence, rationalized.

__________________________

Answered by itzpriyanshi437
1

Answer:

I hope it is helpful to you dear mate

Attachments:
Similar questions