Math, asked by joe953, 3 months ago

rationalise the following question
1 \div 5 \sqrt{3}  - 3 \sqrt{5}

Answers

Answered by EthicalElite
8

Correct Statement :

Rationalise the following question :

 \sf \dfrac{1}{5 \sqrt{3} - 3 \sqrt{5} }

⠀ ⠀⠀

Solution :

We have to rationalise :

  •  \sf \dfrac{1}{5 \sqrt{3} - 3 \sqrt{5}}

Let's Rationalise :

 \sf \dfrac{1}{5 \sqrt{3} - 3 \sqrt{5}}

By Rationalisation :

 \sf : \implies \dfrac{1}{5 \sqrt{3} - 3 \sqrt{5}} \times \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{5 \sqrt{3} + 3 \sqrt{5}}

 \sf : \implies \dfrac{1 \times (5 \sqrt{3} + 3 \sqrt{5})}{(5 \sqrt{3} - 3 \sqrt{5})(5 \sqrt{3} + 3 \sqrt{5})}

 \sf : \implies \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{(5 \sqrt{3} - 3 \sqrt{5})(5 \sqrt{3} + 3 \sqrt{5})}

By using identinty :

 \large \underline{\boxed{\bf{(a-b)(a+b) = a^{2} - b^{2}}}}

 \sf : \implies \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{(5 \sqrt{3})^{2} - (3 \sqrt{5})^{2}}

 \sf : \implies \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{(25 \times 3) - (9 \times 5)}

 \sf : \implies \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{75 - 45}

 \sf : \implies \dfrac{5 \sqrt{3} + 3 \sqrt{5}}{30}

Hence, Answer is :

 \large \underline{\boxed{\bf{\dfrac{5 \sqrt{3} + 3 \sqrt{5}}{30}}}}

Similar questions