Math, asked by rahul7831, 3 months ago

rationalise these numderx+1/x=√7 ,x²+1/x²​

Answers

Answered by Anonymous
4

Given

 \sf \to \: x +  \dfrac{1}{x}  =  \sqrt{7}

To Find the value of

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Now Take

 \sf \to \: x +  \dfrac{1}{x}  =  \sqrt{7}

Squaring on both side

 \sf \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}  = ( \sqrt{7} )^{2}

Using this identities

 \sf \to(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

We get

 \sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  = 7

\sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times  \cancel{x}\times  \dfrac{1}{ \cancel{x}}  = 7

\sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2   = 7

\sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 7 - 2

\sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 5

Answer

\sf \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 5

Similar questions