Math, asked by aditikota, 1 year ago

rationalise this question fastt

Attachments:

Answers

Answered by abhi569
1

 \frac{ {b}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  } +a }


By Rationalization,


 \frac{ {b}^{2} }{( \sqrt{ {a}^{2}  +  {b}^{2}) + a } }  \times  \frac{ \sqrt{ {a}^{2} +  {b}^{2}  }  - a }{ \sqrt{ {a}^{2}  +  {b}^{2} }  - a}  \\  \\  \\  \\  \\  \\  =>  \frac{ {b}^{2} ( \sqrt{ {a}^{2}  +  {b}^{2}  } - a) }{( \sqrt{ {a  ^{2} +  {b}^{2}  }})^{2} -  {a}^{2}   }  \\  \\  \\  \\  \\  \\  =>  \frac{ {b}^{2} ( \sqrt{ {a}^{2}  +  {b}^{2} } - a)}{ {a}^{2} +  {b}^{2}  -  {a}^{2}  }  \\  \\  \\  \\  \\  =>  \frac{ {b}^{2}( \sqrt{ {a}^{2}  +  {b}^{2} } - a)  }{ {b}^{2} }  \\  \\   \\  \\  =>  \sqrt{ {a}^{2}  +  {b}^{2} }  - a

abhi569: Welcome
abhi569: (-:
Similar questions