Math, asked by tenzinyangchen2007, 4 days ago

rationalisethe denominator of ​

Attachments:

Answers

Answered by ӋօօղցӀҽҍօօղցӀҽ
2

hello Army

refer the attachment hope its help

Attachments:
Answered by sajan6491
11

\frac{2}{8+3\sqrt{2}}

\frac{16-6\sqrt{2}}{{8}^{2}-{(3\sqrt{2})}^{2}}

\frac{2(8-3\sqrt{2})}{{8}^{2}-{(3\sqrt{2})}^{2}}

\frac{2(8-3\sqrt{2})}{64-{(3\sqrt{2})}^{2}}

\frac{1024+288-384\sqrt{2}-108\sqrt{2}}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{4(256+72-96\sqrt{2}-27\sqrt{2})}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{4((256+72)+(-96\sqrt{2}-27\sqrt{2}))}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{4(328-123\sqrt{2})}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{4\times 41(8-3\sqrt{2})}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{164(8-3\sqrt{2})}{{64}^{2}-{({(3\sqrt{2})}^{2})}^{2}}

\frac{164(8-3\sqrt{2})}{4096-{({(3\sqrt{2})}^{2})}^{2}}

\frac{164(8-3\sqrt{2})}{4096-{(3\sqrt{2})}^{4}}

\frac{164(8-3\sqrt{2})}{{64}^{2}-{18}^{2}}

\frac{164(8-3\sqrt{2})}{4096-{18}^{2}}

\frac{164(8-3\sqrt{2})}{4096-324}

\frac{164(8-3\sqrt{2})}{3772}

\frac{8-3\sqrt{2}}{23}

Similar questions